
Assembly and Machine Language
Homework 4

Hamid Mohammadi

Your task is to write a standalone assembly program (without using driver.c) that reads two
integers A and B from the standard input, calculates , and prints the result on the AB
standard output. In this homework, you are not allowed to use the IO functions from the book
or the C libraries and you must implement the required functions yourself. These functions
are as follows:

1. read_int: Write an assembly function which reads a signed integer from the
standard input and stores it in EAX. You are only allowed to use the 32-bit Linux
system call sys_read. You cannot use the C libraries. The input may (or may not)
start with a sign character (a ‘-’ or ‘+’).

2. pow_int: Write an assembly function which calculates , where A and B are the AB
arguments passed to the function using the stack. Return the result in the eax
register. The first argument A can be positive, negative or zero, while B is always
nonzero.

3. print_int: Write an assembly function that prints the content of the eax register as an
integer on the standard input. You can only use the Linux system call sys_write.
Please keep in mind that the result can be negative, thus, you must print a preceding
negative sign ‘-’ for negative numbers.

In case you need help with system calls, refer to this website:
https://www.cs.utexas.edu/~bismith/test/syscalls/syscalls.html

You must write a standalone assembly program and you must provide a Makefile for your
program. Please organize your program in these 4 files:

1. Makefile: To build your program
2. main.asm: Contains _start and pow_int functions
3. io.asm: Contains read_int and print_int functions
4. io.inc: The header file for the io.asm to be Included in main.asm. Reading

asm_io.inc gives you an idea about what to write in io.inc.

Extra credit
Write the above as a 64-bit application. You must use 64-bit specific operations and
registers (use RAX, RBX, RSP, RBP instead of EAX, EBX, ESP, EBP and so forth).
Remember that

● in the 64-bit mode, the addresses are 8 bytes wide. This includes the return address
pushed on the stack for function calls.

● The PUSH and POP instructions put/remove 8-byte blocks on/from the stack.
● The return values must get stored in RAX.

https://www.cs.utexas.edu/~bismith/test/syscalls/syscalls.html

● Your program must accept 8-byte signed integers. All calculations must be performed
in 64-bit registers/memory units. The output might be 64 bits wide.

● You are allowed to use R8 - R15 registers.
● The 64-bit system calls differ from the 32-bit ones, look here

 http://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64

Sample inputs and outputs:

inputs: output:

-3 81
4

inputs: output:

-4 -64
3

Sample 64 bits inputs and outputs:
inputs: output:

1073741824 1152921504606846976
2

inputs: output:

-6 -21936950640377856
21

http://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64

